Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Trimethyl[3-methyl-1-(o-tolene-sulfonyl)indol-2-ylmethyl]ammonium iodide and benzyl[3-bromo-1-(phenyl-sulfonyl)indol-2-ylmethyl]tolylamine

P. R. Seshadri, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}{ }^{*}$ J. Govindaraj, ${ }^{\text {a }}$

S. Kannadasan, ${ }^{\text {b }}$ P. C. Srinivasan, ${ }^{\text {b }}$ S. Shanmuga

Sundara Raj, ${ }^{\text {c }}$ † H.-K. Fun ${ }^{\text {d }}$ and M. J. Kim ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\mathbf{b}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {c }}$ Department of Biotechnology, Graduate School of Engineering, Nagoya University, Aichi 464-8603, Japan, ${ }^{\text {d School }}$ of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{\text {e }}$ Department of Physics, Soonchunhyang University, PO Box 97, Asan, Chungnam 336 600, South Korea
Correspondence e-mail: d_velu@yahoo.com
Received 15 July 2002
Accepted 11 October 2002
Online 8 November 2002
The title compounds, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$, (I), and $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{Br}-$ $\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{~S}$, (II), respectively, both crystallize in space group $P \overline{1}$. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the $\mathrm{C}-\mathrm{N}$ bond distances in both compounds is due to the electron-withdrawing character of the phenylsulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions in (I), and by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions in (II).

Comment

Indoles are known for their important chemical, medicinal and physiological activities, and they are of biological interest as antitumour-active substances. Structural studies of some derivatives of indole have been useful in understanding the molecular mechanisms controlling anxiety, convulsions, memory, learning and sleep in animals. Indoles have been of interest for many years, since a large number of natural products contain these heterocyclic nuclei, and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Most of them are found to possess antimicrobial, anti-inflammatory (El-Sayed et al., 1986) and muscle-relaxant properties. A variety of [b]annellated indoles

[^0]are of biological interest as antitumour-active substances (Schollmeyer et al., 1995). Spiro-indole derivatives exhibit antibacterial and antifungal properties (Sehgal et al., 1994). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compounds, (I) and (II), have been carried out and the results are presented here.

(I)

(II)

Figs. 1 and 2 show the molecules of (I) and (II) with their atomic numbering schemes. The two compounds are discussed in parallel below, for ease of comparison. Selected geometric parameters are given in Tables 1 and 3 for (I) and (II), respectively.

In both compounds, the indole ring system is not strictly planar. The angular disposition of the bonds about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviations being seen for the $\mathrm{O}-\mathrm{S}-\mathrm{O}[\mathrm{O} 2-$ $\mathrm{S}-\mathrm{O} 1119.69(14)^{\circ}$ in (I) and 120.5 (2) ${ }^{\circ}$ in (II)] and $\mathrm{O}-\mathrm{S}-\mathrm{N}$ angles [O1-S-N1 106.57 (11) ${ }^{\circ}$ in (I) and 107.4 (2) ${ }^{\circ}$ in (II)]. The widening of the angles may be due to repulsive interactions between the two short $\mathrm{S}=\mathrm{O}$ bonds, similar to what is observed in related structures (Rodriguez et al., 1995).

The $\mathrm{S}-\mathrm{N}$ bond distances $[\mathrm{S}-\mathrm{N} 11.665$ (9) \AA in (I) and 1.677 (4) \AA in (II)] lie within the expected range of $1.63-$ 1.69 A (Kálmán et al., 1981). The average $\mathrm{S}-\mathrm{O}, \mathrm{S}-\mathrm{C}$, and S N distances are $1.435,1.776$ and $1.674 \AA$, respectively, in (I), and $1.409,1.746$ and $1.676 \AA$, respectively, in (II); these are

Figure 1
A view of the molecule of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
comparable with the values found in N-phenylsulfonamides (Gomes et al., 1993). The narrowing of the $\mathrm{N} 1-\mathrm{S}-\mathrm{C} 1$ angle to 106.32 (11) ${ }^{\circ}$ in (I) and of the $\mathrm{N} 1-\mathrm{S}-\mathrm{C} 9$ angle to 106.3 (2) in (II) from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale, 1984).

The $\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 10$ and $\mathrm{O} 1-\mathrm{S}-\mathrm{C} 1-\mathrm{C} 6$ torsion angles in (I) and the $\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{O} 1-\mathrm{S}-\mathrm{C} 9-\mathrm{C} 10$ torsion angles in (II) describe the conformation of the phenylsulfonyl group with respect to the indole system, and the best planes of the indole and phenyl rings form a dihedral angle of 81.6° in (I) and 67.2° in (II), as observed in similar structures (Sankaranarayanan et al., 2000).

The difference in $\mathrm{C}-\mathrm{N}$ bond lengths may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998). The angular distortion of the benzene ring of the indole moiety is a characteristic property. The substitution of the phenylsulfonyl group at atom N1 results in an enhancement of the $\mathrm{C}-\mathrm{N}$ bond lengths. The sum of the angles around N 1 is 360° for (I) and 359.7° for (II), indicating $s p^{2}$ hybridization.

The positions of methyl atom C16 on C14 in (I) and of the Br atom on C 2 in (II) do not deviate significantly from the least-squares planes through the pyrrole ring. The average value of the bond lengths in all of the six-membered rings is $1.391 \AA$, but there are significant deviations among the individual values. In (I), the angles at C8 and C11 are 118.3 (3) and $116.7(2)^{\circ}$, respectively, and around C13 and C10 they are 121.3 (2) and $122.5(3)^{\circ}$, respectively. In (II), the angles around C 8 and C 5 are 120.4 (5) and 121.1 (5) ${ }^{\circ}$, respectively, and around C 7 and C 4 they are $116.8(5)$ and $118.0(5)^{\circ}$, respectively. This may be due to the fusion of the pyrrole ring to the six-membered benzene ring.

The C14-C16 bond length of 1.499 (3) \AA in (I) and the $\mathrm{C} 2-\mathrm{Br}$ bond length of 1.873 (4) \AA in (II) are comparable with values found in the literature (Allen et al., 1987). The strain is due to angular rather than bond-length distortion. A similar effect has also been observed by Sankaranarayanan et al.

Figure 2
A view of the molecule of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(2000). The dihedral angle between the pyrrole and benzene rings is 1.79° in (I) and 2.18° in (II).

The orientation of the indole substituent is influenced by a weak $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1$ interaction in (I), defined by the $\mathrm{C} 11-$ $\mathrm{C} 10-\mathrm{N} 1-\mathrm{S}$ torsion angle, and a weak $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$ interaction in (II), defined by the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{S}$ torsion angle, while the orientation of the phenyl ring bound to the sulfonyl group is governed by a $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$ interaction in (I), defined by the $\mathrm{O} 1-\mathrm{S}-\mathrm{C} 1-\mathrm{C} 6$ torsion angle, and by a $\mathrm{C} 14-$ $\mathrm{H} 14 \cdots \mathrm{O} 2$ interaction in (II), defined by the $\mathrm{O} 2-\mathrm{S}-\mathrm{C} 9-\mathrm{C} 14$ torsion angle. In addition to van der Waals interactions, the packing of the molecules in the unit cell is governed by C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions in (I), and by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions in (II). Details of these interactions are given in Tables 2 and 4 for (I) and (II), respectively.

Experimental

For the preparation of compound (I), $n-\operatorname{BuLi}(6.25 \mathrm{ml}, 1.6 M$ in hexane, 5 mmol) and trimethylethylenediamine (0.2 ml) were added to a solution of 1-phenylsulfonyl-3-methyl-2-(N, N-dimethylamino)methylindole ($1.64 \mathrm{~g}, 5 \mathrm{mmol}$) in dry tetrahydrofuran (50 ml) under nitrogen and the mixture stirred at 195 K for 30 min . To the cherryred reaction mixture, methyl iodide ($0.95 \mathrm{ml}, 15 \mathrm{mmol}$) was added. After stirring at 195 K for 2 h , the reaction mixture was heated slowly to room temperature and after 1 h , it was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$. It was then extracted with dichloromethane $(3 \times 50 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent followed by column-chromatographic purification [silica gel, ethyl acetate-hexane (1:9)] afforded the pure quaternary salt, (I). For the preparation of compound (II), a solution of 1-phenylsulfonyl-2-bromomethyl-3-bromoindole $(4.29 \mathrm{~g}, 10 \mathrm{mmol})$ and N-benzyl-ptoluidine (2 equivalents) in dry dimethylformamide (25 ml) containing finely powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg})$ was stirred at room temperature for 12 h . The reaction mixture was then poured on to ice $(200 \mathrm{~g})$ and the solid which formed was filtered off and washed with an excess of water. The crude product was dried over CaCl_{2} and recrystallization from ethyl acetate-hexane (1:9) gave compound (II).

Compound (I)

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=484.38$
Triclinic, $P \overline{1}$
$a=7.0259$ (1) \AA
$b=12.2874(2) \AA$
$c=13.0484$ (3) \AA
$\alpha=80.316(1)^{\circ}$
$\beta=79.508(1)^{\circ}$
$\gamma=74.462(1)^{\circ}$
$V=1058.64(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.520 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 4122 reflections
$\theta=1.6-28.2^{\circ}$
$\mu=1.63 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.48 \times 0.42 \times 0.40 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-
detector diffractometer

ω scans

Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.472, T_{\text {max }}=0.522$
7395 measured reflections
5062 independent reflections

4494 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-9 \rightarrow 6$
$k=-16 \rightarrow 16$
$l=-16 \rightarrow 17$
Intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=0.99$
5062 reflections
226 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0520 P)^{2}\right. \\
& +0.0768 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=0.84 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.55 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0213 \text { (13) }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0520 P)^{2} \\
&+0.0768 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.007 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.146$
$S=0.89$
4340 reflections
317 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{S}-\mathrm{O} 1$	1.429 (2)	N1-C15	1.438 (3)
$\mathrm{S}-\mathrm{O} 2$	1.4311 (18)	N2-C20	1.496 (3)
$\mathrm{S}-\mathrm{N} 1$	1.6659 (18)	N2-C19	1.499 (3)
$\mathrm{S}-\mathrm{C} 1$	1.775 (2)	N2-C18	1.509 (3)
N1-C10	1.416 (2)		
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$	119.69 (14)	N1-S-C1	106.32 (11)
O1-S-N1	106.57 (11)	C10-N1-C15	107.92 (15)
$\mathrm{O} 2-\mathrm{S}-\mathrm{N} 1$	107.13 (10)	C10-N1-S	120.47 (13)
O1-S-C1	108.44 (13)	C15-N1-S	131.13 (15)
$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 1$	107.96 (11)	C20-N2-C19	107.5 (2)
$\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 10$	-61.93 (18)	O1-S-C1-C6	-17.68 (19)
$\mathrm{O} 2-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 10$	168.84 (16)	$\mathrm{O} 1-\mathrm{S}-\mathrm{C} 1-\mathrm{C} 2$	169.2 (2)
$\mathrm{C} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 10$	53.60 (18)	$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 1-\mathrm{C} 2$	-59.7 (2)
$\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 15$	127.0 (2)	C15-N1-C10-C11	-179.3 (2)
$\mathrm{O} 2-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 15$	-2.2 (2)	S-N1-C10-C11	7.7 (3)

Table 2
Hydrogen-bonding and short-contact geometry ($\AA \mathrm{A}^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{I} 1$	0.96	2.98	$3.882(3)$	157
$\mathrm{C} 19-\mathrm{H} 19 B \cdots \mathrm{I} 1^{\mathrm{i}}$	0.96	2.95	$3.900(3)$	172
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O} 2$	0.96	2.41	$3.078(4)$	127
$\mathrm{C} 17-\mathrm{H} 17 B \cdots \mathrm{O} 2$	0.97	2.26	$2.928(3)$	125
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	0.93	2.41	$2.837(2)$	108
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1$	0.93	2.69	$3.191(3)$	114

Symmetry code: (i) $1+x, y, z$.

Compound (II)

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$	$Z=2$
$M_{r}=545.48$	$D_{x}=1.471 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.742$ (5) \AA	Cell parameters from 25
$b=12.211$ (5) \AA	reflections
$c=12.446$ (5) \AA	$\theta=1.9-25.0^{\circ}$
$\alpha=61.362(5)^{\circ}$	$\mu=1.78 \mathrm{~mm}^{-1}$
$\beta=99.119$ (5) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=108.610$ (5) ${ }^{\circ}$	Block, yellow
$V=1231.5$ (10) \AA^{3}	$0.48 \times 0.34 \times 0.28 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.020$
diffractometer	$\theta_{\text {max }}=25^{\circ}$
ω scans	$h=0 \rightarrow 11$
Absorption correction: ψ scan	$k=-14 \rightarrow 13$
(North et al., 1968)	$l=-14 \rightarrow 14$
$T_{\text {min }}=0.481, T_{\text {max }}=0.635$	3 standard reflections
4619 measured reflections	frequency: 120 min
4340 independent reflections	intensity decay: <2\%

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{Br}-\mathrm{C} 2$	$1.873(4)$	$\mathrm{S}-\mathrm{C} 9$	$1.747(4)$
$\mathrm{S}-\mathrm{O} 1$	$1.416(4)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.410(6)$
$\mathrm{S}-\mathrm{O} 2$	$1.421(4)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.419(5)$
$\mathrm{S}-\mathrm{N} 1$	$1.677(4)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.466(5)$
			$107.4(2)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$	$120.5(2)$	$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 9$	$106.30(19)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1$	$107.4(2)$	$\mathrm{N} 1-\mathrm{S}-\mathrm{C} 9$	$124.7(3)$
$\mathrm{O} 2-\mathrm{S}-\mathrm{N} 1$	$105.3(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{S}$	$126.9(3)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{C} 9$	$109.0(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S}$	
			$-9.2(6)$
			$-0.8(5)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1-\mathrm{C} 8$	$-149.1(3)$	$\mathrm{S}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$-132.9(4)$
O2-S-N1-C8	$-19.5(4)$	$\mathrm{O} 1-\mathrm{S}-\mathrm{C} 9-\mathrm{C} 10$	$44.0(5)$
O1-S-N1-C1	$23.8(4)$	$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 9-\mathrm{C} 10$	
O2-S-N1-C1	$153.4(3)$	$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 9-\mathrm{C} 14$	

Table 4
Hydrogen-bonding ahd short-contact geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~N} 2$	0.93	2.87	$3.268(7)$	107
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2$	0.93	2.81	$3.025(6)$	95
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	0.93	2.35	$2.876(7)$	116

For both compounds, all H atoms were fixed geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93-0.97 \AA, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

For compound (I), data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT. For compound (II), data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DV thanks DST, India, and HKF would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1573). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley \& Sons.
El-Sayed, K., Barnhart, D. M., Ammon, H. L. \& Wassel, G. M. (1986). Acta Cryst. C42, 1383-1385.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gomes, A. C., Biswas, G., Biswas, S., Biswas, G. K., Iitaka, Y. \& Bannerjee, A. (1993). J. Crystallogr. Spectrosc. Res. 23, 513-517.

Govindasamy, L., Velmurugan, D., Ravikumar, K. \& Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277-279.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Kálmán, A., Czugler, M. \& Argau, Gy. (1981). Acta Cryst. B37, 868-877.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Padwa, A., Brodney, M. A., Liu, B., Stake, K. \& Wu, T. (1999). J. Org. Chem. 64, 3595-3607.
Rodriguez, J. G., del Valle, C., Esteban-Calderon, C. \& Martinez-Repoll, M. (1995). J. Chem. Crystallogr. 25, 249-257.

Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. \& Perumal, P. T. (2000). Acta Cryst. C56, 475-476.

Schollmeyer, D., Fischer, G. \& Pindur, U. (1995). Acta Cryst. C51, 25722575.

Sehgal, V., Singh, P., Dandia, A. \& Bohra, R. (1994). Acta Cryst. C50, 11561159.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: \dagger Present address: Department of Biotechnology, Graduate School of Engineering, Nagoya University, Aichi 464-8603, Japan.

